Ninth International Workshop on Program Comprehension IWPC 2001)
May 12-13, 2001 - Toronto, Ontario, Canada - Westin Harbour Castle Hotel

Co-located with ICSE 2001
CALL FOR PAPERS

General chair

Ric Holt

Dep. of Computer Science
University of Waterloo, Canada
E-mail: holt@plg.uwaterloo.ca

Program co-chairs

Kostas Kontogiannis

Dep. of Electrical and Computer Engineering
University of Waterloo, Canada

E-mail: kostas@swen.uwaterloo.ca

Andrea De Lucia

Faculty of Engincering
University of Sannio, Benevento, Italy
E-mail: delucia@unisannio.it

Sponsored by:

IEEE, IEEE Computer Society, IEEE Computer
Society TCSE

In cooperation with:

o University of Waterloo, Ontario, Canada

o University of Sannio, Benevento, Italy

o University of Toronto, Ontario, Canada

» University of Victoria, British Columbia, Canada

Conference location

IWPC 2001 will be held in Toronto, Ontario, Canada
at the Westin Harbour Castle Hotel, co-located with
ICSE 2001. Please, sce the ICSE 2001 web
page (hitp://www cstuviccaficse2001) for more
information.

Submissions deadlines

o Papers: November 15, 2000

 Tool demo proposals: December 15, 2000

» Working session proposals: December 15, 2000
Acceptance notification: January 15, 2001

Camera ready copy due: February 20, 2001

Electronic submission guidelines

To submit a paper, a tool demo, or a working session
proposal, please send an emal o
jwpc200] @swen.uwaterloo.ca including the type of
the submission (technical paper, tool demo proposal,
working session proposal), the title, the list of authors,
the abstract, and a contact phone number. Please, do
not include the paper in the message. By rewmn mail,
you will receive instructions on how to ftp your
submission.

Web sites: http:/serg.ing.unisannio jtiwpc2001
http://www.swen.uwaterloo.cal~iwpc2001

Theme

Comprehending programs is one of the core software engineering activities. Program
comprehension is needed when one maintains, reuses, migrates, reengineers, inspects, or
enhances software systems. This workshop will gather practitioners and researchers from
academia, industry, and government, to review the current state of the practice, to report on
program understanding experiments, and to present issues and solutions in the general area of
program comprehension.

The workshop program will include technical papers, tool demos, and working sessions.
Authors are expected to present an accepted paper or proposals at the workshop in Toronto.

Technical Papers

Papers related, but not limited, to the following topics are invited:

» Theories and models for software comprehension;

o Program comprehension processes and strategies;

o Cognitive models in program comprehension;

¢ Experiments with comprehension models;

o Knowledge, program representation forms and repositories for program comprehension;

o Tools facilitating software comprehension;

o Comprehension during large scale maintenance, reengineering, and migration;

o Reuse reengineering and concept assignment processes;

o Reverse engineering strategies to support comprehension;

« Innovative technologies for reverse engineering;

» Case studies in reverse engineering, reengineering, and maintenance with focus to program
understanding;

o Guidelines for facilitating program comprehension (based on observation and
experimentation);

o Computer Supported Collaborative Understanding (CSCU);

o Understanding systems built using distributed object technology;

o User interfaces, software visualization and animation;

¢ Understanding product line systems.

Papers should be original work, approximately 10 proceeding pages or 6000 words. Papers

must not have been previously published nor have been submitted to, or be in consideration

for, any journal, book, or conference. The workshop proceedings will be published by TEEE

Computer Society Press.

Tool demos

TWPC 2001 final program will include demo sessions of tools for program comprehension. We

invite two page proposal submissions in IEEE format to be included in the workshop

proceedings. Proposals for tools demonstrations should include a description of the tool or

environment, its applicability to program comprehension, and a brief description of the

proposed demonstration. Specify the proposal as "Research Prototype" or "Vendor Tool".

Authors of accepted demos are also invited to exhibit their tool at the ICSE 2001 exhibits and

tools fair.

Working sessions

We also invite proposals for working sessions (90 minutes each) on any of the topics areas

mentioned above. Working sessions are designed around a specific theme and should be more
interactive than a panel session. Working session proposals (maximum one page in IEEE

proceedings format) should include the leader of the session (working session chair) and the list
of co-authors with their short debate statements.

Research Prototype: Automated Analysis of Scientific & Engineering Semantics

Mark E. M. Stewart
Dynacs Engineering, Inc.
Cleveland, OH 44135, USA
Mark E.Stewart@grc.nasa.gov

Abstract

Physical and mathematical formulae and concepts are
Sundamental elements of scientific and engineering
software. These classical equations and methods are time
tested, universally accepted, and relatively unambiguous.
The existence of this classical ontology suggests an ideal
problem for automated comprehension. This problem is
further motivated by the pervasive use of scientific code
and high code development costs.

To investigate code comprehension in this classical
knowledge domain, a research prototype has been devel-
oped. The prototype incorporates scientific domain
knowledge to recognize code properties (including units,
physical, and mathematical quantity). Also, the procedure
implements programming language semantics to propa-
gate these properties through the code. This prototype's
ability to elucidate code and detect errors will be demon-
strated with state of the art scientific codes.

1. Tool description

From a user’s perspective, this procedure involves taking a
user's existing scientific or engineering code (1), adding
semantic declarations, and viewing/querying the analysis
results (Figure 1). Semantic declarations (distinguished by
“C?") identify primitive program variables using stan-
dardized technical terms (ie. mass, acceleration).

C? MA ==mass
C? ACC == acceleration
FF =MA*ACC)

From the analysis perspective, this procedure involves
three elements: a scientific semantics analysis procedure,
facilities for programming language semantics, and a
graphical user interface (GUI).

1.1 Scientific semantics analysis procedure

Classical mathematics emphasizes equations—lexical,
sequential expressions that quantify physical or mathe-
matical concepts. A parser is not only an effective way of
representing a large set of these physical equations, but a

This is a pre,

parser can also efficiently recognize these equations in
program expressions.

In particular, (1) may be translated into expressions of
code properties, including, a physical quantity expression
(2), and a physical dimensions expression (3).

mass * acceleration (2)
(M) * (L*T**-2) (3)

Parsers recognize formulae in these translated phrases. For
example, a dynamics expert parser would include the rule
(4), be able to recognize the phrase (2) as Newton’s law,
and annotate the data structure.

force <= mass * acceleration @)

The units expert parser can reduce (3) and verify units.
These properties (Table 1) reflect the different aspects of
program statements that scientists and engineers analyze.

Parsers represent and recognize equations effectively
and easily for many properties. However, recognizing
mathematical rules is harder. For example, the discrete
difference, A¢$, may involve many different physical
quantities in place of ¢, and this generality precludes
recognition by lexical pattern matching alone. In fact,
parser recognition must be supplemented with additional
tests (5).

Ab <= ¢-¢ %
{ Additional Tests }

Quantity-Physical | force < mass * accel 3
Quantity-Math Ape=¢-¢ 5
Value / Interval [1,50] <= [0,49] + 1 2
Grid Location o< by + 9, 4
Vector Analysis o =2+, +¢2 1
Non-Dimensional oA < YA + /A 1
Dimensions Le@Wn*T 1
Units m<mis *s 1

Table 1: Scientific semantic properties analyzed by the proce-
dure including sample equations, and number of parsers.

print or reprint of a paper intended for presentation at a

conference. Because changes may be made before fqrmal o
publication, this is made available with the u.nd.erstandmg that it will
not be cited or reproduced without the permission of the author.

1.2 Programming language semantics

These analyzed properties (Table 1) reside in data
structures and must be propagated through a code as the
programming language dictates. For example, a result’s
assignment to an array involves a transfer of properties
which must respect array organization and instruction
sequence. Other language issues include array reference
recognition, loop analysis, basic block termination,
subroutine call tree ordering, and external variables. The
parser paradigm of section 1.1 is not a particularly appro-
priate solution here; instead, non-general coding is re-
quired.

1.3 User Interface

The GUI allows the user control of these analyses, and
displays the user’s code as well as the analysis results
(Figure 1). The user queries the analysis results by select-
ing text from the displayed code; the properties of vari-
ables, expressions, and arrays are displayed, with
derivations. A dictionary provides definitions of technical

terms. Semantic concepts may be searched for; navigation
tools assist in discovering results.

2. Demonstration test cases

The demonstration will involve test cases from a suite of
ten state of the art, practical, scientific and engineering
codes including an experimental data reduction code, one-,
two-, and three-dimensional computational fluid dynamics
(CFD) codes for turbomachinery problems, and a chemi-
cally reacting fluid flow code. The size of these codes is
typically 3-8k loc.

The test case results show 20-30% recognition' and
establish the feasibility of these analyses. Yet, additional
effort is required to reach the degree of recognition
required for a practical tool.

3. Bibliography
[1] MEEM. Stewart, S. Townsend, “An Experiment in

Automated, Scientific-Code Semantic Analysis,” AIAA-
99-3276, June 1999.

HY wtesti) - 2@ - a3)
atest2(l) ~ toond - Win
" atest3() = a(S) dRodr-win
ain(l) = twin - ditodr.
¢

tsrat = gasisn{emach?, 2, gam)
tsin = tsrat*tin

C? TSIN == TEMPERATURE_ABSOLUTE
atsin(f) = tsin =~ dftodr -

uin = emach1*sqri(gam*rgas*tsin)
arhoul(f) = rhoin*uin

__l auin(} = uin
visin = visref {tsintvisrf)y~vispwr

c
C? uln == VELOCITY<SCALAR>
/ reex! = rhoin*uln®chordvisin

File Dictionary Metrics Highlight Build Language Typeset About HtpoFLI

Gonndetermine intet static temperature from Isentroplc relations

]
c.....':'.‘.dleurmlnl inlet density, veloclty, viscosity, Reynolds number
. oln = M

code; the middle region explains selecte

4 Quantity/Math: DENSITY

+ Location; Expression

« Units/Dim/MNonDim: slugs/M3, length™-3 mass™1 . ONE
v MAds: SCALAR ‘

Deduced from équatlon:
' DENSITY = PRESSURE / WORK_PUM

BExpertise: GASDYNAMICS

Flle: flow_inietf Undefined: 14 Errors: 2

Metascope Undefined
Qcour Error
Back Not Understood
Fwd Ambigultes
Multi-Display Assumptions
Psrformance
1P}
5 Not Understood: 18

"WORK*
That fundamental physical quantity, work,

SIRREIM
That fundamental physical quantity, work. but per unit mass.

“WORK_TOTAL"

L] Work plus kinetic energy.
7 ;

Figure 1: GUI display for the semantic

analysis program. The top area displays the user’s
d text; the bottom area is a dictionary/lexicon.

